Mini-P1 plasmid partitioning: excess ParB protein destabilizes plasmids containing the centromere parS.
نویسنده
چکیده
The partition system of the unit-copy plasmid P1 consists of two proteins, the parA and parB gene products, and a cis-acting site, parS. Production of high levels of the P1 ParB protein, from an external promoter on a high-copy-number vector, inhibits the propagation of lambda-mini-P1 prophages and destabilizes other P1-derived plasmids. The interference by ParB protein depends on the parS site, or centromere, of the P1 partition region; plasmids lacking parS are unaffected. The defect is more severe than the defect due to mutations that simply eliminate par function. In the presence of excess ParB protein, plasmids carrying parS are more unstable than would be predicted from a random distribution at cell division. The destabilization is a segregation defect, as the copy number of parS-bearing plasmids is not decreased under these conditions. Thus, it appears that ParB protein binds to parS; if too much protein is present, it sequesters such plasmids so they cannot be properly, or even randomly, partitioned. This suggests that under normal conditions, ParB protein recognizes and binds to parS and may be the protein responsible for pairing plasmids during the process of partitioning at cell division.
منابع مشابه
Transcriptional interference by a complex formed at the centromere-like partition site of plasmid P1.
The partition site, parS, promotes accurate segregation of the replicated P1 plasmid to daughter cells when the P1-encoded ParA and ParB proteins are supplied. The parS site was inserted into the Escherichia coli chromosome between the promoter and the structural gene for beta-galactosidase, lacZ. There was little interference with lacZ expression when ParA and ParB were supplied in trans. Howe...
متن کاملpTAR-encoded proteins in plasmid partitioning.
Partition cassettes, essential for the segregational stability of low-copy-number bacterial plasmids, typically encode two autoregulated proteins and an adjacent cis-acting centromere analog to which one or perhaps both proteins bind. The diminutive partition region of pTAR of Agrobacterium spp. was reported to be exceptional, encoding only a single protein, ParA (D. R. Gallie and C. I. Kado, J...
متن کاملCondensation and localization of the partitioning protein ParB on the bacterial chromosome.
The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We s...
متن کاملParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres
In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, whi...
متن کاملSwitching protein-DNA recognition specificity by single-amino-acid substitutions in the P1 par family of plasmid partition elements.
The P1, P7, and pMT1 par systems are members of the P1 par family of plasmid partition elements. Each has a ParA ATPase and a ParB protein that recognizes the parS partition site of its own plasmid type to promote the active segregation of the plasmid DNA to daughter cells. ParB contacts two parS motifs known as BoxA and BoxB, the latter of which determines species specificity. We found that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 170 2 شماره
صفحات -
تاریخ انتشار 1988